Publications:

  1. 2008

  2. (56) Hierarchical carbon nanotube assemblies created by sugar-boric or boronic acid interactions, S. Tamesue, M. Numata, K. Kaneko,T. D. James, and Seiji Shinkai, Chem. Commun., in press.

  3. (55) Immobilization of Polythiophene Chirality Induced by a Helix-Forming b-1,3-Glucan Polysaccharide (Schizophyllan) through Sol-Gel Reaction, S. Haraguchi, M. Numata, K. Kaneko, and S. Shinkai, Bull. Chem. Soc. Jpn., 8, 1002 (2008).

  4. (54) Creation of Hierarchical Carbon Nanotube Assemblies through Alternative Packing of Complementary Semi-Artificial b-1,3-Glucan/Carbon Nanotube Composites, M. Numata, K. Sugikawa, K. Kaneko, and S. Shinkai, Chem. Eur. J., 14, 2398 (2008).

  5. (53) Creation of polynucleotide-assisted molecular assemblies in organic solvents:general strategy toward the creation of artificial DNA-like nanoarchitectures , M. Numata, K. Sugiyasu, T. Kishida, S. Haraguchi, N. Fujita, S.-M. Park, Y.-J. Yun, B.-H. Kim, and S. Shinkai, Org. Biomol. Chem., 6, 712 (2008).

  6. 2007

  7. (52) Carbohydrate-appended curdlans as a new family of glycoclusters with binding properties both for a polynucleotide and lectins, T. Hasegawa, M. Numata, S. Okumura, T. Kimura, K. Sakurai, and S. Shinkai, Org. Biomol. Chem., 5, 2404 (2007).

  8. (51) b-1,3-Glucan Schizophyllan Can Act as a One-dimensional Host to Arrange Icosahedral Carboranes, M. Numata, S. Tamesue, T. Nagasaki, K. Sakurai, and S. Shinkai, Chem. Lett., 36, 668 (2007).

  9. (50) Controlled Stability of the Triple-Stranded Helical Structure of a b-1,3-Glucan with a Chromophoric Aromatic Moiety at a Peripheral Position, M. Ikeda, S. Haraguchi, M. Numata, and S. Shinkai, Chem. Asian J., 2, 1290 (2007).

  10. (49) Instantaneous Inclusion of a Polynucleotide and Hydrophobic
    Guest Molecules into a Helical Core of Cationic b-1,3-Glucan Polysaccharide, M. Ikeda, T. Hasegawa, M. Numata, K. Sugikawa, K. Sakurai, M. Fujiki, and S. Shinkai, J. Am. Chem. Soc., 129, 3979 (2007).

  11. (48) New approach to preparing one-dimensional Au nanowires utilizing a
    helical structure constructed by schizophyllan, A.-H. Bae, M. Numata, S. Yamada, and S. Shinkai, New. J. Chem., 31, 618 (2007).

  12. (47) Complex formation between cationic b-1,3-glucan and hetero-sequence
    oligodeoxynucleotide and its delivery into macrophage-like cells to induce
    cytokine secretion, M. Ikeda, J. Minari, N. Shimada, M. Numata, K. Sakurai, and S. Shinkai, Org. Biomol. Chem., 5, 2219 (2007).

  13. (46) Molecular assemblies as templates toward the creation of functional superstructures,
    K. Sada, M. Takeuchi, N. Fujita, M. Numata, and S. Shinkai,Chem. Soc. Rev., 36, 415 (2007).

  14. (45) beta-1,3-glucan (schizophyllan) can act as a one-dimensional host for creating chirally twisted poly(p-phenylene ethynylene), M. Numata, T. Fujisawa, C. Li, S. Haraguchi, M. Ikeda, K. Sakurai, and S. Shinkai, Supramol. Chem., 19, 107 (2007).

  15. 2006

  16. (44) beta-1,3-Glucan Polysaccharide (Schizophyllan) Acts as a One-Dimensional Host for Creating Supramolecular Dye Assemblies, M Numata, Shingo Tamesue, Tomohisa Fujisawa, Shuichi Haraguchi, Teruaki Hasegawa, Ah-Hyun Bae, Chun Li, Kazuo Sakurai, and Seiji Shinkai, Org. Lett., 8, 5533 (2006).

  17. (43) Unexpected chiroptical inversion observed for supramolecular complexes formed between an achiral polythiophene and ATP, C. Li, M. Numata, M. Takeuchi, S. Shinkai. Chem. Asian, J., 1, 95 (2006).

  18. (42) Galactose-PEG dual conjugation of beta-1,3-D-glucan schizophyllan for antisense oligonucleotides delivery to enhance the cellular uptake, R. Karinaga, T. Anada, J. Minari, M. Mizu, K. Koumoto, J. Jukuda, K. Nakazawa, T. Hasegawa, M. Numata, S. Shinkai, K. Sakurai, Biomaterials, 27, 1626 (2006).

  19. (41) Click chemistry on curdlan: A regioselective and quantitative approach to develop artificial beta-1,3-Glucans with various functional appendages. T. Hasegawa, M. Umeda, M. Numata, T. Fujisawa, S. Haraguchi, K. Sakurai, S. Shinkai, Chem. Lett., 35, 82 (2006).

  20. 2005

  21. (40) Poly(diacetylene) nanofibers can be fabricated through photo-irradiation using natural polysaccharide schizophyllan as a one-dimensional mold. T. Hasegawa, S. Haraguchi, M. Numata, C. Li, A.-H. Bae, T. Fujisawa, K. Kaneko, K. Sakurai, S. Shinkai, Org. Bioorg. Chem., 3, 4321 (2005).

  22. (39) Click chemistry' on polysaccharides: a convenient, general, and monitor approach to develop beta-1,3-D-glucan with various functional appendages. T. Hasegawa, M. Umeda, M. Numata, C. Li, A.-H. Bae, T. Fujisawa, S. Haraguchi, K. Sakurai, S. Shinkai, Carbohydrate Res., 34, 35 (2006).

  23. (38) Oligosilane-nanofibers can be prepared through fabrication of permethyldecasilane within a helical superstructure of schizophyllan. S. Haraguchi, T. Hasegawa, M. Numata, M. Fujiki, K. Uezu, K. Sakurai, S. Shinkai, Org. Lett., 7, 5605 (2005).

  24. (37) Water-soluble poly(3,4-ethylenedioxythiophene) nanoparticles created by a templating effect of beta-1.3-glucan schizophyllan, C. Li, M. Numata, T. Hasegawa, T. Fujisawa, S. Haraguchi, K. Sakurai, and S. Shinkai, Chem. Lett., 34, 1354 (2005).

  25. (36) A sensitive colorimetric and fluorescent probe based on a polythiophene derivative for the detection of ATP, C. Li, M. Numata, M. Takeuchi, and S. Shinkai, Angew, Chem. Int. Ed., 44, 6371 (2005).

  26. (35) Water-soluble polythiophene as an opitical probe for detection of the helicity and conformational transition in polysaccharides, C. Li, M. Numata, T. Hasegawa, K. Sakurai, and S. Shinkai, Chem. Lett., 34, 1354 (2005).

  27. (34) beta-1,3-Glucans polysaccharides as novel one-dimensional hosts for DNA/RNA, conjugated polymers and nanoparticles. K. Sakurai, K. Uezu, M. Numata, T. Hasegawa, C. Li, K. Kaneko, and S. Shinkai, Chem. Commun (Feature Article)., 2005, 4383. [Chem. Commun. Top 10 Articles]

  28. (33) beta-1.3-Glucan polysaccharide can act as a one-dimensional host to create novel silica nanofiber structures, M. Numata, C. Li, A.-H. Bae, K. Kaneko, K. Sakurai, and S. Shinkai, Chem. Commun., 2005, 4655.

  29. (32) Schizophyllan acts as a one-dimensional host to accommodate 5, 10, 15, 20-tetrakis (4-carboxyphenyl)porphyrinatozinc acetate to produce its fibrous superstructure, T. Hasegawa, T. Fujisawa, M. Numata, C. Li, A.-H. Bae, S. Haraguchi, K. Sakurai, and S. Shinkai, Chem. Lett., 34, 1118 (2005).

  30. (31) Transferrin-appended beta-1,3-D-glucan schizophyllan for antisense oligonucleotides delivery to enhance the cellular uptake, T. Anada, R. Karinaga, M. Mizu, K. Koumoto, T. Matsumoto, M. Numata, S. Shinkai, and K. Sakurai, e-J. of Surface Science and Nanotechnology, 3, 195 (2005).

  31. (30) Pallalel vs. anti-parallel orientation in a curdlan/oligo(dA) complex as estimated by a FRET technique, M. Numata, K. Koumoto, M. Mizu, K. Sakurai, and S. Shinkai, Organic. Bioorganic. Chem., 3, 2255 (2005).

  32. (29) Inclusion of cut and as-grown single-walled carbon nanotubes in the helical superstructure of schizophyllan and curdlan (beta-1,3-glucans), M. Numata, M. Asai, K. Kaneko, T. Hasegawa, K. Sakurai, and S. Shinkai, J. Am. Chem. Soc., 127, 5875 (2005).

  33. (28) Poly(N-substituted-acrylamide)-branched schizophyllans are useful for selective recovery of homopolynucleotides through convenient and quick precipitation procedures, T. Matsumoto, M. Umeda, T. Hasegawa, M. Numata, K. Sakurai, K. Koumoto, and S. Shinkai, Polymer J., 37, 177 (2005).

  34. (27) Self-assembly of supramolecular chiral insulated molecular wire, C. Li, M. Numata, A.-H. Bae, K. Sakurai, and S. Shinkai, J. Am. Chem. Soc., 127, 4548 (2005).[ACS Most-Accessed Article]

  35. (26) 1D arrangement of Au nanoparticles by the helical structure of schizophyllan: a unique encounter of a natural product with inorganic compounds, A.-H. Bae, M. Numata, T. Hasegawa, C. Li, K. Kaneko, K. Sakurai, and S. Shinkai, Angew. Chem. Int. Ed., 44, 2030 (2005).[Selected as Cover Picture]

  36. (25) Schizophyllan-folate conjugate as a new non-cytotoxic and cancer-targeted antisense carrier, T. Hasegawa, T. Fujisawa, S. Haraguchi, M. Numata, R. Karinaga, T. Kimura, S. Okumura, K. Sakurai, and S. Shinkai, Bioorg. Med. Chem. Lett., 15, 327 (2005).

  37. (24) Schizophyllan can act as a one-dimensional host to construct poly(diacetylene) nanofibers, T. Hasegawa, S. Haraguchi, M. Numata, T. Fujisawa, C. Li, K. Kaneko, K. Sakurai, and S. Shinkai, Chem. Lett., 34, 40 (2005).

  38. (23) Superstructural poly(pyrrole) assemblies created by a DNA templating method, A.-H. Bae, T. Hatano, M. Numata, M. Takeuchi, and S. Shinkai, Macromolecules, 38, 1609 (2005).

  39. 2004

  40. (22) Sol-gel reaction using DNA as a template: an attempt toward transcription of DNA into inorganic materials, M. Numata, K. Sugiyasu, T. Hasegawa, and S. Shinkai, Angew. Chem. Int. Ed., 43, 3279 (2004).[WILEY Press Release (Link) ]

  41. (21) beta-1,3-Glucan (schizophyllan) can act as a one-dimensional host for creation of novel poly(aniline) nanofiber structures, M. Numata, T. Hasegawa, T. Fujisawa, K. Sakurai, and S. Shinkai, Org. Lett., 6, 4447 (2004).

  42. (20) Complementary hydrogen-bonding between tymidine-based low molecular-weight gelator and polynucleotide in organic media, K. Sugiyasu, M. Numata, N. Fujita, S.-M. Park, Y.-J. Yun, B.-H. Kim, and S. Shinkai, Chem. Commun., 2004, 1996 .

  43. (19) Higher-order conformations of DNA are useful as templates to create various superstructural poly(pyrrole) morphologies, A.-H. Bae, T. Hatano, M. Numata, M. Takeuchi, and S. Shinkai, Chem. Lett., 33, 436 (2004).

  44. (18) Schizophyllans carrying oligosaccharide appendages as potential candidates for cell-targeted antisense carrier, T. Hasegawa, T. Fujisawa, M. Numata, T. Matsumoto, M. Umeda, R. Karinaga , M. Mizu, K. Koumoto, T. Kimura, S. Okumura, K. Sakurai, and S. Shinkai, Org. Biomol. Chem., 2, 3091 (2004).

  45. (17) Single-walled carbon nanotubes acquire a specific lectin-affinity through supramolecular wrapping with lactose-appended schizophyllan, T. Hasegawa, T. Fujisawa, M. Numata, M. Umeda, T. Matsumoto, T. Kimura, S. Okumura, K. Sakurai, and S. Shinkai, Chem. Commun., 2004, 2150

  46. (16) A polysaccharide carrier for immunostimulatory CpG DNAs to enhance cytokine secretion, M. Mizu, K. Koumoto, T. Anada, T. Matsumoto, M. Numata, S. Shinkai, T. Nagasaki, and K. Sakurai, J. Am. Chem. Soc., 126, 8372 (2004).

  47. (15) Curdlan and schizophyllan (beta-1,3-glucans) can entrap single-wall carbon nanotubes in their helical superstructure, M. Numata, M. Asai, K. Kaneko, T. Hasegawa, N. Fujita, Y. Kitada, K. Sakurai, and S. Shinkai, Chem. Lett., 33, 232 (2004).

  48. (14) Lactose-appended schizophyllan is a potential candidate as a hepatocyte-targeted antisense carrier, T. Hasegawa, M. Umeda, T. Matsumoto, M. Numata, M. Mizu, K. Koumoto, K. Sakurai, and S. Shinkai, Chem. Commun., 2004, 382.

  49. (13) Chemically modified polysaccharide schizophyllan for antisense oligonucleotides delivery to enhance the cellular uptake efficiency, T. Matsumoto, M. Numata, M. Mizu, K. Koumoto, T. Anada, K. Sakurai, T. Nagasaki, and S. Shinkai, Biochimica et Biophysica Acta-General Subjects, 1670, 91 (2004).

  50. (12) Low Mw sulfated curdlan with improved water solubility forms macromolecular complexes with polycytidylic acid, K. Koumoto, M. Umeda, M. Numata, T. Matsumoto, K. Sakurai, T. Kunitake, and S. Shinkai, Carbohydr. Res., 339, 161 (2004).

  51. 2003

  52. (11) Polysaccharide-polynucleotide complexes (15): thermal stability of schizophyllan (SPG)/Poly(C) triple strands is controllable by ア-amino acid modification, M. Numata, T. Matsumoto, M. Umeda, K. Koumoto, K. Sakurai, T. Kunitake, and S. Shinkai, Bioorg. Chem., 31, 163 (2003).

  53. (10) Polynucleotide can stabilize nucleobase-appended cholesterol gels,
    M. Numata and S. Shinkai, Chem. Lett., 32, 308 (2003).

  54. 2002

  55. (9) A new synthetic method for rotaxanes via tandem Claisen rearrangement, diesterification, and aminolysis, K. Hiratani, J. Suga, Y. Nagawa, H. Houjou, H. Tokuhisa, M. Numata, K. Watanabe, Tetrahedron Lett., 43, 5747 (2002).

  56. (8) Efficient synthesis of novel macrocyclic tetraamide compounds: a unique reaction process involving both self-assembling and folding of intermediates, M. Numata, K. Hiratani, Y. Nagawa, H. Houjou, S. Masubuchi, S. Akabori, New, J. Chem., 26, 503 (2002).

  57. 2000

  58. (7) Thermodynamic insight into the origin of a calyx[n]arene-[60]fullerene interaction and its application to a porphyrin-[60]fullerene energy transfer system, A. Ikeda, M. Kawaguchi, Y. Suzuki, T. Hatano, M. Numata, S. Shinkai, A. Ohta, M. Aratono, J. Inclusion Phenomena and Macrocyclic Chemistry, 38, 163 (2000).

  59. (6) Polybenzyl ether dendrimers for the complexation of [60]fullerenes, J.-F. Eckert, D. Byrne, J.-F. Nicoud, L. Oswald, J.-F. Nierengarten, M. Numata, A. Ikeda, S. Shinkai, N. Armaroli, New. J. Chem., 24, 749 (2000).

  60. (5) Properly assembled dendrons can be immobilized into dendrimers by in situ crosslink, M. Numata, A. Ikeda, S. Shinkai, Chem. Lett., 2000, 370.

  61. (4) Three-to-sic-carbon ring-enlargement reaction of cyclic ortho esters bearing a diazocarbonyl side chain, Use of the intermolecular formation of tricyclooxonium ylides, A. Oku, M. Numata, J. Org. Chem., 65, 1899 (2000).

  62. (3) Pyridine-appended 5,6-open-aza[60]fulleroid can act as a unique host for alcohols, A. Ikeda, C. Fukuhara, M. Kawaguchi, M. Numata, S. Shinkai, S.-G. Liu, L. Echegoyen, J. Chem. Soc., Perkin 2, 2000, 307.

  63. 1999

  64. (2) A novel attempt to control the aggregation number of dendrons with a saccharide, A. Ikeda, M. Numata, S. Shinkai, Chem., Lett., 1999, 929.

  65. (1) Dendrimers can act as a host for [60]fullerene, M. Numata, A. Ikeda, C. Fukuhara, S. Shinkai, Tetrahedron Lett., 40, 6945 (1999).


主要特許

  出願番号・発明者・発明の名称・出願人・出願日

(1)出願番号:2007-059774、発明者:新海征治/杉川幸太/沼田宗典/広瀬良治、発明名称:イオン性カードラン誘導体を用いるナノ構造体、出願人:JST、三井製糖、出願日:2007.3.9

(2)出願番号:2007-144930、発明者:新海征治/為末真吾/沼田宗典/広瀬良治、発明名称:β-1,3-グルカン/疎水性高分子複合体をジボロン酸で架橋したナノ構造体、出願人:JST、三井製糖、出願日:2007.3.9.

(3)出願番号:2007-059772、発明者:新海征治/原口修一/沼田宗典/広瀬良治/櫻井和朗、発明名称:シリカで被覆されたβ-1,3-グルカン/導電性高分子複合体、出願人:JST、三井製糖、出願日:2007.3.9.

(4)出願番号:2007-059773、発明者:新海征治/藤沢友久/沼田宗典、発明名称:光電変換素子、出願人:JST、出願日:2007.3.9.

(5)出願番号:2007-058271、発明者:新海征治/沼田宗典/広瀬良治、発明名称:両親媒性高分子複合体、出願人:JST、三井製糖、出願日:2007.3.8.

(6)出願番号:2007-059771、発明者:新海征治/為末真吾/沼田宗典/櫻井和朗/長崎 健/広瀬良治、発明名称:β-1,3-グルカン/カルボラン複合体、出願人:JST、三井製糖、出願日:2007.3.9.

(7) 出願番号:2006-144930、発明者:新海征治/沼田宗典/広瀬良治/李春、発明名称:高分子による細胞の可視化、出願人:JST、三井製糖、出願日:2006.5.25.

(8) 出願番号:2006-114929、発明者:新海征治/沼田宗典/広瀬良治/櫻井和朗、発明名称:核酸/多糖/カーボンナノチューブ複合体、出願人:JST、三井製糖、出願日:2006.5.25.

(9) 出願番号:PCT/JP2005/8352、発明者:新海征治/沼田宗典/長谷川輝明/藤澤友久/櫻井和朗、発明名称:細胞またはタンパク質を認識する機能性カーボンナノチューブ複合体、出願人:JST、水雅美(三井製糖)、出願日:2005.5.6

(10) 出願番号:2005-65127、発明者:新海征治/水雅美/沼田宗典/長谷川輝明/発明名称:金属酸化物ファイバー・多糖複合体、出願人:JST、水雅美(三井製糖)、出願日:2005.3.9

(11)出願番号:2005-59838、発明者:新海征治/水雅美/李春/沼田宗典、発明名称:らせん状導電性高分子ナノワイヤー・多糖複合体、出願人:JST、水雅美(三井製糖)、出願日:2005.3.3

(12)出願番号:2005-20532、発明者:新海征治/水雅美/ベ・アヒョン/沼田宗典、長谷川輝明、発明名称:金属ナノ粒子・多糖複合体、出願人:JST、水雅美(三井製糖)、出願日:2005.1.28

(13)出願番号:2004-349277、発明者:新海征治/水雅美/長谷川輝明/沼田宗典、原口修一/李春、発明名称:ファイバー状導電性ポリマーとその製造方法、出願人:JST、水雅美(三井製糖)、出願日:2004. 12.2

(14)出願番号:2004-321757、発明者:新海征治/沼田宗典/水雅美/長谷川輝明、発明名称:ポリアニリン・β1,3グルカン複合体、出願人:JST、水雅美(三井製糖)、出願日:2004.11.5

(15)出願番号:2003-339569、発明者:新海征治/沼田宗典/水雅美/甲元一也/穴田貴久/朝井雅剛 発明名称:β1,3グルカンを用いるカーボンナノチューブの可溶化法、出願人:JST、水雅美(三井製糖)、出願日:2003.9.30

(16)出願番号:2004-261024、発明者:新海征治/櫻井和朗/水雅美/甲元一也/沼田宗典/松本貴博 発明名称:ペプチド修飾多糖を用いる遺伝子導入剤、出願人:JST、水雅美(三井製糖)、出願日:2003.2.28