Within Science of Synthesis you can register for a MySoS personal account. This allows you to save and load queries as well as manually revise search results and change your personal settings.

To start a search, please go to sos.thieme.com

Science of Synthesis is accessible with an institutional license by IP authorization or username and password. If you cannot access Science of Synthesis, please contact your librarian or information officer.
Structure search available with:
- ChemDraw
- ISIS/Draw (IE only)
- Java Applet
and combined with a text search.

How to do an advanced search:

- Enter prefixes for a search by:

<table>
<thead>
<tr>
<th>Prefix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section</td>
</tr>
<tr>
<td>Page</td>
</tr>
<tr>
<td>Volume</td>
</tr>
<tr>
<td>SOS Contributor</td>
</tr>
<tr>
<td>Author</td>
</tr>
<tr>
<td>Journal</td>
</tr>
<tr>
<td>Year</td>
</tr>
<tr>
<td>Title</td>
</tr>
<tr>
<td>CAS Registry Number</td>
</tr>
<tr>
<td>Yield</td>
</tr>
<tr>
<td>Temperature</td>
</tr>
<tr>
<td>Catalyst</td>
</tr>
<tr>
<td>Solvent</td>
</tr>
<tr>
<td>Name Reactions</td>
</tr>
</tbody>
</table>
28.7.1.1.2.2.1 Method 1: Fremy’s Salt Oxidation

The first chemical preparation of the antineoplastic marine alkaloids of the cystostatin series 132 has been accomplished by modified knevenagel-Stobbe pyridine-ring formation and a photochemical enamine insertion into a C–H bond as key steps (Scheme 39). A total synthesis has been developed on the basis of retrosynthetic analysis. In the last part of this total synthesis the 4-(2-azidophenyl)quinolin-7,8-dione 134 is formed as a stable intermediate product from quinolin-8-ol 133 by Fremy’s salt oxidation (Scheme 39).

Scheme 39 Formation of a 4-(2-azidophenyl)quinolin-7,8-dione by Oxidation of a Quinolin-8-ol with Fremy’s salt.¹⁴⁴

6-(2-Acetoxyethyl)-4-(2-azidophenyl)quinolin-7,8-dione (134); Typical Procedure:¹⁴⁴

A soln of potassium nitrosodisulfonate (5.12 g, 39.1 mmol) in 0.5M H₃PO₄ buffer (275 mL) was added to a well-stored soln of 133 (1.10 g, 8.06 mmol) in MeOH (200 mL) and the resulting mixture was stirred at rt for 3.5 h. The solvents were evaporated, and the residue was diluted with H₂O (300 mL) and extracted with CH₂Cl₂. The combined extracts were dried (Na₂SO₄) and the solvents were evaporated to yield an orange-yellow solid; yield: 979 mg (96%); mp 174–177°C.

References

Related Information

Explore contents

- Houben-Weyl methods
- Archive (these methods have been updated)
- Special topics
 - Asymmetric Organocatalysis
 - Stereoselective Synthesis
 - Water in Organic Synthesis
 - ...

Logical organization of content

Download chapter as PDF

Compound class introduction

Method within the context of a chapter
Science of Synthesis provides a critical review of synthetic methodology developed to-date in the fields of organic and organometallic chemistry.

Features include

- Selection of molecular transformations by world-renowned experts with elaboration on scope and limitations
- Full-text descriptions of synthetic methods with practical experimental procedures immediately applicable in the lab
- Community of over 1,000 experts involved in the review and updating of methods
- Logical organization of the synthetic methods for each functional group
- Intuitive search functions to allow rapid lead generation and route optimization

Save time when planning a synthesis

Retrieve a concise hitlist of reliable organic transformations and applicable methods, hand-selected by experts in the field

Quickly find the right method

The full-text expert reviews help you to find out immediately which synthetic methods are useful for a particular route or not

Start with a synthesis immediately

Practical and reliable experimental procedures can be implemented easily in the lab

Get a comprehensive overview of the field or a certain topic

All methods are organized in a logical, consistent structure by functional group and presented in the context of a review of the field. This makes Science of Synthesis the perfect learning, teaching and consulting tool.
System Requirements

PC: Windows XP and 7, Microsoft Internet Explorer 7.0 and higher, Mozilla Firefox 6.0 and higher

Mac: OS X, Version 10.5 and higher, Safari 2.0 and higher

Adobe Reader, Java Runtime environment

Contact

For information about licensing and access please go to www.thieme-connect.com or contact:

The Americas
Thieme Institutional Sales
E-mail: esales@thieme.com
Phone: +1–212–584–4695

Europe, Africa, Asia, Australia
(except India and Japan)
Thieme Institutional Sales
E-mail: eproducts@thieme.de
Phone: +49–711–8931–407

India
Thieme Medical and Scientific Publishers Private Ltd.
E-mail: eproducts@thieme.in
Phone +91–120–4556600

Japan
Bureau Hosoya
E-mail: brhosoya@poplar.ocn.ne.jp
Phone: +81–3–3358–0692

For information about the content and features of Science of Synthesis:

Marketing Thieme Chemistry
E-mail: marketing@thieme-chemistry.com
Phone: +49–711–8931–771
www.thieme-chemistry.com