Original Papers (2008-)




2023


Oligosaccharide sensing using fluorophore-probled curdlans in aqueous media. C. H. Kurohara, Y. Hori, M. Numata, G. Fukuhara, ACS Applied Polymer Materials, 5, 2254-2263 (2023).



Charge dependent self-assembly of water-soluble porphyrin in a variety of dimensions. C. Kanzaki, M. Numata, Chemistry Letters, 52, 37-40 (2023).



2022


Automated supramolecular polymerization in a microflow: a versatile platform for multistep supramolecular reactions, K. Yamashita, M. Numata, ChemPlusChem, 18, e202200254 (2022) (Cover Picture).


Ionic supramolecular polymerization of water-soluble porphyrins: balancing ionic attraction and steric repulsion to govern stacking, C. Kanzaki, H. Yoneda, S. Nomura, T. Maeda, M. Numata, RSC Advances, 12, 30670-30681 (2022).


2021


Geometrical pH mapping of microfluids by principal-component-analysis-based xyz-spectrum conversion method, A. Inagawa, K. Saito, M. Fukuyama, M. Numata, N. Uehara, Analytica Chimica Acta 1182, 338952 (2021).


Directional Supramolecular Polymerization in a Dynamic Microsolution: A Linearly Moving Polymer’s End Striking Monomers, S. Matoba, C. Kanzaki, K. Yamashita, T. Kusukawa, G. Fukuhara, T. Okada, T. Narushima, H. Okamoto, M. Numata, J. Am. Chem. Soc. 143, 8731-8746 (2021).


Linear momentum of a microfluid realizes an anisotropic reaction at the ends of a supramolecular nanofiber, C. Kanzaki, S. Matoba, A. Inagawa, G. Fukuhara, T. Okada, T. Narushima, H. Okamoto, M. Numata, Bull. Chem. Soc. Jpn. 94, 579-589 (2021).



2020


Hydrostatic Pressure-Controlled Molecular Recognition. A Steroid Sensing Case Using Modified Cyclodextrin, A. Miyagawa, H. Yoneda, H. Mizuno, M. Numata, T. Okada, G. Fukuhara, ChemPhotoChem, 5, 118-122 (2020).


Microflow system promotes acetaminophen crystal nucleation, A. Nishigaki, M. Maruyama, M. Numata, C. Kanzaki, S. Tanaka, H. Yoshikawa, M. Imanishi, M. Yoshimura, Y. Mori, K. Takano, Eng. Life Sci. 20, 395-401 (2020).


Proton-gradient-driven self-assembly of porphyrin  and in situ dynamic analysis in a microflow platform, C. Kanzaki, A. Inagawa, G. Fukuhara, T. Okada, M. Numata,  ChemSystemsChem, 2, e2000006 (2020) (Front Cover).


Creation of discrete 1D microstructures: directional dissociation from the end of a metastable supramolecular polymer, C. Kanzaki, T. Nakadozono, M. Numata, ChemPlusChem, 85, 74-78 (2020) (Cover Picture).


2019


Kinetic Control in Synthesis and Self-assembly, Edited by M. Numata, S. Yagai, T. Hamura, Elsevier, Cambridge, MA, United States (2019).


Chiroptical properties of reporter-modified or reporter-complexed highly 1,6-glucose-branched β-1,3-glucan, K. Tamano, K. Nakasha, M. Iwamoto, M. Numata, T. Suzuki, H. Uyama, G. Fukuhara, Polymer Journal, 51, 1063-1071 (2019).


Oligosaccharide sensing in aqueous media using porphyrin-curdlan conjugates: an allosteric signal-amplification system, M. Sasaki, Y. Ryoson, M. Numata, G. Fukuhara, J. Org. Chem. 84, 6017-6027 (2019).


2018


Molecular Synchronization Enhances Molecular Interactions: An Explanatory Note of Pressure Effects, M. Numata, C. Kanzaki, Crystals , 8, 300 (2018).


Enhanced self-assembly abilities coupled with nano- and micro-scale non-equilibrium phenomena in flowing micro fields, M. Numata, R. Nogami, A. Kitamura, Chem. Nano. Mat. 4, 175-182 (2018).


Water-induced self-assembly of an amphiphilic perylene bisimide dyad into vesicles, fibers,

    coils, and rings, M. Ogasawara, X. Lin, H. Kurata, H. Ouchi, M. Yamauchi, T. Ohba, T. Kajitani,

    T. Fukushima, M. Numata, R. Nogami, B. Adhikari, and S. Yagai,

    Mater. Chem. Front. 2, 171-179 (2018).


2017


Oligosaccharide sensing in aqueous media by porphyrin-curdlan conjugates.

     A prêt-á-porte rather than haute-couture approach,

     G. Fukuhara, M. Sasaki, M. Numata, T. Mori, Y. Inoue,

     Chem. Eur. J., 23, 11272-11278 (2017).


2016


Beta-Glucans, Applications, Effects and Research; Supramolecular Wrapping by

    Beta-(1-3)-D-  Glucans toward Polysaccharide-Based Functional Materials,

    M. Numata, K. Sugikawa, S. Haraguchi, T. Shiraki, S. Tamaru, S. Tamesue and S. Shinkai,     

    Published by Nova Science Publishers, Inc. New York.


Flowing microenvironments regulate the helical pitch of a semi-artificial polymer,

    M. Numata and N. Hirose, RSC Adv., 6. 65619-65623 (2016).


2015


Controlled Nucleation of Supramolecular Polymerization in Pressure Regulatable Microflow  

    Channel, M. Numata, R. Sakai, A. Asai, Y. Sanada, K. Sakurai, Chem. Lett. 44, 1601-1603   

    (2015).


Supramolecular Chemistry in Microflow Fields: Toward A New Material World of Precise Kinetic

     Control, M. Numata, Chem. Asian J. (FOCUS REVIEW) 10, 2574-2588 (2015).


Energy-dissipative Self-assembly Driven in Microflow: A Time-programed Self-organization and 

    Decomposition of Metastable Nanofibers, M. Numata, A. Sato, R. Nogami, Chem. Lett. 44,

    995-997 (2015).


Creation of Kinetically Stabilized Porphyrin Microfilms ThroughSynchronized Hydrogen-Bonding

    Interactions in Microflow, M. Numata, Y. Nishino, Y. Sanada, K. Sakurai, Chem. Lett., 44, 861-863

    (2015).


Synchronized activation of π-conjugated molecules toward self-assembly: precise controlling the

    hysteresis of the metastable state along microflow, M. Numata, T. Kozawa, R. Nogami, K. Tanaka,

    Y. Sanada, K. Sakurai, Bull. Chem. Soc. Jpn. 88, 471-479 (2015).


Controlled Self-assembly of Fullerene Derivatives Passing Through Programmable Self-assemble

    Field in Microflow Channel, M. Numata, T. Kozawa, T. Nakadozono, Y. Sanada, K. Sakurai,

    Chem. Lett., 44, 577-579 (2015) (Editor’s Choice).


2014


Spatially Controlled Initiation/Termination of Supramolecular Polymerization: Creation of End

    capped Nanofiber with Discrete Length in Microflow, M. Numata, R. Sakai, Chem. Lett., 43,

    1890-1892 (2014).


Kinetically Controllable Supramolecular Polymerization through Synchronized Activation of

    Monomers, M. Numata, R. Sakai, Bull. Chem. Soc. Jpn., 87, 858-862 (2014) (BCSJ Award Article).


Two-Dimentional Assembly Based on Flow Supramolecular Chemistry: Kinetic Control of

    Molecular Interaction Under Solvent Diffusion, M. Numata, T. Kozawa, Chem. Eur. J., 20,

    6234-6240 (2014) (selected as Frontispiece).


Two-dimensional self-assembly of amphiphilic porphyrins on a dynamically shrinking droplet

    surface, M. Numata, Y. Takigami, N. Hirose, R. Sakai, Org. Biomol. Chem., 12, 1627-1632 (2014).


2013


Supramolecular polymerization in microfluidic channels: Spatial control over multiple

    intermolecular interactions, M. Numata, T. Kozawa, Chem. Eur. J. 19, 12629 (2013).


Orthogonal polymer recognition based on semiartificial helical polysaccharide, M. Numata,

    D. Kinoshita, N. Hirose, T. Kozawa, H. Tamiaki, Chem. Lett., 42, 266-268 (2013).


Controlled stacking and unstacking of peripheral chlorophyll units drives the spring-like

    contraction and expansion of a semi-artificial helical polymer,

    M. Numata, D. Kinoshita, N. Hirose, T. Kozawa, H. Tamiaki, Y. Kikkawa, M. Kanesato,

    Chem. Eur. J., 19, 1592-1598 (2013)  (selected as Frontispiece).


2012


Microflow-driven temporal self-assembly of amphiphilic molecules, M. Numata, M. Takayama,

    S. Shoji, H. Tamiaki, Chem. Lett., 12, 1689-1691 (2012).


Hierarchical supramolecular spinning of nanofibers in a microfluidic channel:

    Tuning nanostructures at dynamic interface, M. Numata, Y. Takigami, M. Takayama,

    T. Kozawa, N. Hirose, Chem. Eur. J., 18, 13008-12017 (2012) (selected as VIP paper).


Self-assembly of amphiphilic molecules in droplet compartments:an approach toward discrete

    submicrometer-sized one-dimensional structures, M. Numata, D. Kinoshita, N. Taniguchi,

    H. Tamiaki, A. Ohta, Angew. Chem. Int. Ed., 51, 1844-1848 (2012).


2011


‘Supramolecular wrapping chemistry’ by helix-forming polysaccharides: a powerful strategy for

    generating diverse polymeric nano-architectures, M. Numata and S. Shinkai,

    Chem. Commun. (Feature Article), 47, 1961-1975 (2011).


Creation of Hierarchical Polysaccharide Strand: Supramolecular Spinning of Nanofibers

    by Microfluidic Device, M. Numata, Y. Takigami, M. Takayama, Chem. Lett., 40, 102-103 (2011).


Hierarchical polymer assemblies constructed by the mutual template effect of cationic polymer

    complex and anionic supramolecular nanofiber, K. Sugikawa, M. Numata, D. Kinoshita,

    K. Kaneko, K. Sada, A. Asano, S. Seki, and S. Shinkai, Org. Biomol. Chem., 9, 146-153 (2011).


pH and sugar responsive host polymer hydrogels designed based on sugar and boronic acid

    interaction, S. Tamesue, M. Numata, S. Shinkai, Chem. Lett., 40, 1303-1305 (2011).


2010


Semi-Artificial Polysaccharide Can Provide a Unique Nano-Space for the Construction of

    Supramolecular Dye-Assembly, K. Sugikawa, M. Numata, K. Sada, and S. Shinkai,

    Chem. Lett., 39, 710 (2010).


Creation of supramolecular assemblies from a dipolar dye molecule by the template effect of

    1,3-glucan polysaccharide, S. Malik, N. Fujita, M. Numata, K. Ogura and S. Shinkai,

    J. Mater. Chem., 20, 9022-9024 (2010).


Creation of unique supramolecular nanoarchitectures utilizing natural polysaccharide as

    a one-dimensional host, M. Numata, J. Incl. Phenom. Macrocycl Chem., 68, 25 (2010).


2009


“Supramolecular” Amphiphilies Created by Wrapping Poly(styrene) with the Helix-Forming

    b-1,3-Glucan Polysaccharide, M. Numata, K. Kaneko, H. Tamiaki, S. Shinkai,

    Chem. Eur. J., 15, 12338 (2009).


Circularly Polarized Luminescence from Supramolecular Chiral Complexes of Achiral Conjugated

    Polymers and a Neutral Polysaccharide, S. Haraguchi, M. Numata, C. Li, Y. Nakano, M. Fujiki,

     and S. Shinkai, Chem. Lett., 38, 245 (2009).


2008


Alternate Layer-by-Layer Adsorption of Single- and Double-Walled Carbon Nanotubes Wrapped

    by Functionalized b-1,3-Glucan Polysaccharides

    K. Sugikawa, M. Numata, K. Kaneko, K. Sada, and S. Shinkai, Langmuir, 24, 13270 (2008)


Hierarchical carbon nanotube assemblies created by sugar-boric or boronic acid interactions,

    S. Tamesue, M. Numata, K. Kaneko,T. D. James, and S. Shinkai, Chem. Commun.,4478 (2008).


・Immobilization of Polythiophene Chirality Induced by a Helix-Forming

     b-1,3-Glucan Polysaccharide (Schizophyllan) through Sol-Gel Reaction, S. Haraguchi,

     M. Numata, K. Kaneko, and S. Shinkai, Bull. Chem. Soc. Jpn., 8, 1002 (2008).


・Creation of Hierarchical Carbon Nanotube Assemblies through Alternative Packing of

    Complementary Semi-Artificial b-1,3-Glucan/Carbon Nanotube Composites, M. Numata,

    K. Sugikawa, K. Kaneko, and S. Shinkai, Chem. Eur. J., 14, 2398 (2008).


・Creation of polynucleotide-assisted molecular assemblies in organic solvents:general strategy

    toward the creation of artificial DNA-like nanoarchitectures , M. Numata, K. Sugiyasu,

    T. Kishida, S. Haraguchi, N. Fujita, S.-M. Park, Y.-J. Yun, B.-H. Kim, and S. Shinkai,

    Org. Biomol. Chem., 6, 712 (2008).


Before 2008


Books and Reviews

  1. (1)"β-1,3-Glucans polysaccharides as novel one-dimensional hosts for DNA/RNA, conjugated polymers and nanoparticles", K. Sakurai, K. Uezu, M. Numata, T. Hasegawa, C. Li, K. Kaneko, and S. Shinkai, Chem. Commun. (Feature Article), 4383-4398 (2005).


  1. (2)”核酸をテンプレートとする1次元集積体とナノ化石ー分子認識と構造転写を利用した有機および無機ハイブリッドの創製” 沼田宗典 新海征治、化学と工業 2005年 5月 vol. 58  pp. 586-588.


  1. (3)”多糖・β-1,3-グルカンを1次元ホストとして用いたバイオナノマテリアルの創製” 日本化学会 生体機能関連化学部会 News Letter, vol. 20, No. 3, pp. 10-13 (2005).


(4) ”モレキュラーインフォーマティクスを拓く分子機能材料” (新海征治 編集)

   日刊工業新聞社 pp. 16-18 (2006) (分筆)


(5) "Molecular assemblies as templates toward the creation of functional superstructures"

K. Sada, M. Takeuchi, N. Fujita, M. Numata, and S. Shinkai, Chem. Soc. Rev., 36, 415 (2007).


  1. (6)”高分子にアシストされる超分子形成”ー光機能材料を指向した超分子色素系の創製を目指してー沼田宗典 民秋 均、化学 vol. 62, No. 9, pp 70-71 (2007).


  1. (7)有機・無機・金属ナノチューブ ー非カーボンナノチューブ系の最新技術と応用展開ー 清水敏美 木島 剛 編集、第4章 高分子系ナノチューブ ”β-1,3-グルカン系多糖高分子を用いた1次元シリンダーホスト” 沼田宗典 新海征治、フロンティア出版 (2008).


  1. (8)"Self-Assembled Polysaccharide Nanotubes Generated from β-1,3-Glucan Polysaccharides", Munenori Numata and Seiji Shinkai, Advances in Polymer Science, ed. by T. Shimizu, Springer, Berlin, June, 28, 2008, Published Online.


  1. (9)超分子 サイエンス&テクノロジー基礎からイノベーションまでー(国武豊喜 監修)第2章 1次元分子集合体 ”ゲスト誘導型多糖系ホストの新展開” 沼田宗典、 エス・ティー・エス出版 (2009).


  1. (10)”Creation of unique supramolecular nanoarchitectures utilizing natural polysaccharide as a one-dimensional host”, M. Numata, J. Incl. Phenom. Macrocycl Chem., 68, 25-47 (2010).


  1. (11)”Characterisation of supramolecules by TEM (Monographs in supramolecular chemistry)”, K. Kaneko, M. Numata, M. Takeuchi, S. Shinkai, Royal Society of Chemistry, UK. (2012).


  1. (12)”1本の連続的な流れの中で組み立てる超分子構造:超分子プラントとしてのマイクロフロー空間の可能性” 日本化学会 生体機能関連化学部会 News Letter, vol. 28, No. 4, pp. 11-14 (2014).


  1. (13)”マイクロ空間での超分子科学” 日本化学会 化学と工業 デビジョントピックス (有機化学ディビジョン)vol. 67-8 p. 698 (2014).


  1. (14)“Polymer Self-Assembly Mediated by Boronic Acid”, M. Numata, Boron – Sensing, Synthesis and Supramolecular Self-Assembly – ed. by M. Li, J. S. Fossey, and T. D. James, Royal Society of Chemistry, Cambridge, UK. (2015).


(15)”KINETIC CONTROL IN SYNTHESIS AND SELF-ASSEMBLY”, M. Numata, S. Yagai, T. Hamura, ACADEMIC PRESS, Elsevier (2019).


(16)”精密制御された動的な微小反応場が拓く超分子反応” 化学工業社 化学工業 特集(先端ナノテクノロジー技術の開発と実用化)第72巻 第2号 (2021).