Oligosaccharide sensing using fluorophore-probled curdlans in aqueous media. C. H. Kurohara, Y. Hori, M. Numata, G. Fukuhara, ACS Applied Polymer Materials, 5, 2254-2263 (2023).
Charge dependent self-assembly of water-soluble porphyrin in a variety of dimensions. C. Kanzaki, M. Numata, Chemistry Letters, 52, 37-40 (2023).
2022
Automated supramolecular polymerization in a microflow: a versatile platform for multistep supramolecular reactions, K. Yamashita, M. Numata, ChemPlusChem, 18, e202200254 (2022) (Cover Picture).
Ionic supramolecular polymerization of water-soluble porphyrins: balancing ionic attraction and steric repulsion to govern stacking, C. Kanzaki, H. Yoneda, S. Nomura, T. Maeda, M. Numata, RSC Advances, 12, 30670-30681 (2022).
2021
Geometrical pH mapping of microfluids by principal-component-analysis-based xyz-spectrum conversion method, A. Inagawa, K. Saito, M. Fukuyama, M. Numata, N. Uehara, Analytica Chimica Acta 1182, 338952 (2021).
Directional Supramolecular Polymerization in a Dynamic Microsolution: A Linearly Moving Polymer’s End Striking Monomers, S. Matoba, C. Kanzaki, K. Yamashita, T. Kusukawa, G. Fukuhara, T. Okada, T. Narushima, H. Okamoto, M. Numata, J. Am. Chem. Soc. 143, 8731-8746 (2021).
Linear momentum of a microfluid realizes an anisotropic reaction at the ends of a supramolecular nanofiber, C. Kanzaki, S. Matoba, A. Inagawa, G. Fukuhara, T. Okada, T. Narushima, H. Okamoto, M. Numata, Bull. Chem. Soc. Jpn. 94, 579-589 (2021).
2020
Hydrostatic Pressure-Controlled Molecular Recognition. A Steroid Sensing Case Using Modified Cyclodextrin, A. Miyagawa, H. Yoneda, H. Mizuno, M. Numata, T. Okada, G. Fukuhara, ChemPhotoChem, 5, 118-122 (2020).
Microflow system promotes acetaminophen crystal nucleation, A. Nishigaki, M. Maruyama, M. Numata, C. Kanzaki, S. Tanaka, H. Yoshikawa, M. Imanishi, M. Yoshimura, Y. Mori, K. Takano, Eng. Life Sci. 20, 395-401 (2020).
Proton-gradient-driven self-assembly of porphyrin and in situ dynamic analysis in a microflow platform, C. Kanzaki, A. Inagawa, G. Fukuhara, T. Okada, M. Numata, ChemSystemsChem, 2, e2000006 (2020) (Front Cover).
Creation of discrete 1D microstructures: directional dissociation from the end of a metastable supramolecular polymer, C. Kanzaki, T. Nakadozono, M. Numata, ChemPlusChem, 85, 74-78 (2020) (Cover Picture).
2019
Kinetic Control in Synthesis and Self-assembly, Edited by M. Numata, S. Yagai, T. Hamura, Elsevier, Cambridge, MA, United States (2019).
Chiroptical properties of reporter-modified or reporter-complexed highly 1,6-glucose-branched β-1,3-glucan, K. Tamano, K. Nakasha, M. Iwamoto, M. Numata, T. Suzuki, H. Uyama, G. Fukuhara, Polymer Journal, 51, 1063-1071 (2019).
Oligosaccharide sensing in aqueous media using porphyrin-curdlan conjugates: an allosteric signal-amplification system, M. Sasaki, Y. Ryoson, M. Numata, G. Fukuhara, J. Org. Chem. 84, 6017-6027 (2019).
2018
Molecular Synchronization Enhances Molecular Interactions: An Explanatory Note of Pressure Effects, M. Numata, C. Kanzaki, Crystals , 8, 300 (2018).
Enhanced self-assembly abilities coupled with nano- and micro-scale non-equilibrium phenomena in flowing micro fields, M. Numata, R. Nogami, A. Kitamura, Chem. Nano. Mat. 4, 175-182 (2018).
Water-induced self-assembly of an amphiphilic perylene bisimide dyad into vesicles, fibers, coils, and rings, M. Ogasawara, X. Lin, H. Kurata, H. Ouchi, M. Yamauchi, T. Ohba, T. Kajitani, T. Fukushima, M. Numata, R. Nogami, B. Adhikari, and S. Yagai, Mater. Chem. Front. 2, 171-179 (2018).
2017
Oligosaccharide sensing in aqueous media by porphyrin-curdlan conjugates. A prêt-á-porte rather than haute-couture approach, G. Fukuhara, M. Sasaki, M. Numata, T. Mori, Y. Inoue, Chem. Eur. J., 23, 11272-11278 (2017).
2016
Beta-Glucans, Applications, Effects and Research; Supramolecular Wrapping by Beta-(1-3)-D- Glucans toward Polysaccharide-Based Functional Materials, M. Numata, K. Sugikawa, S. Haraguchi, T. Shiraki, S. Tamaru, S. Tamesue and S. Shinkai, Published by Nova Science Publishers, Inc. New York.
Flowing microenvironments regulate the helical pitch of a semi-artificial polymer, M. Numata and N. Hirose, RSC Adv., 6. 65619-65623 (2016).
2015
Controlled Nucleation of Supramolecular Polymerization in Pressure Regulatable Microflow Channel, M. Numata, R. Sakai, A. Asai, Y. Sanada, K. Sakurai, Chem. Lett. 44, 1601-1603 (2015).
Supramolecular Chemistry in Microflow Fields: Toward A New Material World of Precise Kinetic Control, M. Numata, Chem. Asian J. (FOCUS REVIEW) 10, 2574-2588 (2015).
Energy-dissipative Self-assembly Driven in Microflow: A Time-programed Self-organization and Decomposition of Metastable Nanofibers, M. Numata, A. Sato, R. Nogami, Chem. Lett. 44, 995-997 (2015).
Creation of Kinetically Stabilized Porphyrin Microfilms ThroughSynchronized Hydrogen-Bonding Interactions in Microflow, M. Numata, Y. Nishino, Y. Sanada, K. Sakurai, Chem. Lett., 44, 861-863
(2015).
Synchronized activation of π-conjugated molecules toward self-assembly: precise controlling the hysteresis of the metastable state along microflow, M. Numata, T. Kozawa, R. Nogami, K. Tanaka, Y. Sanada, K. Sakurai, Bull. Chem. Soc. Jpn. 88, 471-479 (2015).
Controlled Self-assembly of Fullerene Derivatives Passing Through Programmable Self-assemble Field in Microflow Channel, M. Numata, T. Kozawa, T. Nakadozono, Y. Sanada, K. Sakurai, Chem. Lett., 44, 577-579 (2015) (Editor’s Choice).
2014
Spatially Controlled Initiation/Termination of Supramolecular Polymerization: Creation of End capped Nanofiber with Discrete Length in Microflow, M. Numata, R. Sakai, Chem. Lett., 43, 1890-1892 (2014).
Kinetically Controllable Supramolecular Polymerization through Synchronized Activation of Monomers, M. Numata, R. Sakai, Bull. Chem. Soc. Jpn., 87, 858-862 (2014) (BCSJ Award Article).
Two-Dimentional Assembly Based on Flow Supramolecular Chemistry: Kinetic Control of Molecular Interaction Under Solvent Diffusion, M. Numata, T. Kozawa, Chem. Eur. J., 20, 6234-6240 (2014) (selected as Frontispiece).
Two-dimensional self-assembly of amphiphilic porphyrins on a dynamically shrinking droplet surface, M. Numata, Y. Takigami, N. Hirose, R. Sakai, Org. Biomol. Chem., 12, 1627-1632 (2014).
2013
Supramolecular polymerization in microfluidic channels: Spatial control over multiple intermolecular interactions, M. Numata, T. Kozawa, Chem. Eur. J. 19, 12629 (2013).
Orthogonal polymer recognition based on semiartificial helical polysaccharide, M. Numata, D. Kinoshita, N. Hirose, T. Kozawa, H. Tamiaki, Chem. Lett., 42, 266-268 (2013).
Controlled stacking and unstacking of peripheral chlorophyll units drives the spring-like contraction and expansion of a semi-artificial helical polymer, M. Numata, D. Kinoshita, N. Hirose, T. Kozawa, H. Tamiaki, Y. Kikkawa, M. Kanesato, Chem. Eur. J., 19, 1592-1598 (2013) (selected as Frontispiece).
2012
Microflow-driven temporal self-assembly of amphiphilic molecules, M. Numata, M. Takayama, S. Shoji, H. Tamiaki, Chem. Lett., 12, 1689-1691 (2012).
Hierarchical supramolecular spinning of nanofibers in a microfluidic channel: Tuning nanostructures at dynamic interface, M. Numata, Y. Takigami, M. Takayama, T. Kozawa, N. Hirose, Chem. Eur. J., 18, 13008-12017 (2012) (selected as VIP paper).
Self-assembly of amphiphilic molecules in droplet compartments:an approach toward discrete submicrometer-sized one-dimensional structures, M. Numata, D. Kinoshita, N. Taniguchi, H. Tamiaki, A. Ohta, Angew. Chem. Int. Ed., 51, 1844-1848 (2012).
2011
‘Supramolecular wrapping chemistry’ by helix-forming polysaccharides: a powerful strategy for generating diverse polymeric nano-architectures, M. Numata and S. Shinkai, Chem. Commun. (Feature Article), 47, 1961-1975 (2011).
Creation of Hierarchical Polysaccharide Strand: Supramolecular Spinning of Nanofibers by Microfluidic Device, M. Numata, Y. Takigami, M. Takayama, Chem. Lett., 40, 102-103 (2011).
Hierarchical polymer assemblies constructed by the mutual template effect of cationic polymer complex and anionic supramolecular nanofiber, K. Sugikawa, M. Numata, D. Kinoshita, K. Kaneko, K. Sada, A. Asano, S. Seki, and S. Shinkai, Org. Biomol. Chem., 9, 146-153 (2011).
pH and sugar responsive host polymer hydrogels designed based on sugar and boronic acid interaction, S. Tamesue, M. Numata, S. Shinkai, Chem. Lett., 40, 1303-1305 (2011).
2010
Semi-Artificial Polysaccharide Can Provide a Unique Nano-Space for the Construction of Supramolecular Dye-Assembly, K. Sugikawa, M. Numata, K. Sada, and S. Shinkai, Chem. Lett., 39, 710 (2010).
Creation of supramolecular assemblies from a dipolar dye molecule by the template effect of 1,3-glucan polysaccharide, S. Malik, N. Fujita, M. Numata, K. Ogura and S. Shinkai, J. Mater. Chem., 20, 9022-9024 (2010).
Creation of unique supramolecular nanoarchitectures utilizing natural polysaccharide as a one-dimensional host, M. Numata, J. Incl. Phenom. Macrocycl Chem., 68, 25 (2010).
2009
“Supramolecular” Amphiphilies Created by Wrapping Poly(styrene) with the Helix-Forming b-1,3-Glucan Polysaccharide, M. Numata, K. Kaneko, H. Tamiaki, S. Shinkai, Chem. Eur. J., 15, 12338 (2009).
Circularly Polarized Luminescence from Supramolecular Chiral Complexes of Achiral Conjugated Polymers and a Neutral Polysaccharide, S. Haraguchi, M. Numata, C. Li, Y. Nakano, M. Fujiki, and S. Shinkai, Chem. Lett., 38, 245 (2009).
2008
Alternate Layer-by-Layer Adsorption of Single- and Double-Walled Carbon Nanotubes Wrapped by Functionalized b-1,3-Glucan Polysaccharides K. Sugikawa, M. Numata, K. Kaneko, K. Sada, and S. Shinkai, Langmuir, 24, 13270 (2008)
Hierarchical carbon nanotube assemblies created by sugar-boric or boronic acid interactions, S. Tamesue, M. Numata, K. Kaneko,T. D. James, and S. Shinkai, Chem. Commun.,4478 (2008).
Immobilization of Polythiophene Chirality Induced by a Helix-Forming b-1,3-Glucan Polysaccharide (Schizophyllan) through Sol-Gel Reaction, S. Haraguchi, M. Numata, K. Kaneko, and S. Shinkai, Bull. Chem. Soc. Jpn., 8, 1002 (2008).
Creation of Hierarchical Carbon Nanotube Assemblies through Alternative Packing of Complementary Semi-Artificial b-1,3-Glucan/Carbon Nanotube Composites, M. Numata, K. Sugikawa, K. Kaneko, and S. Shinkai, Chem. Eur. J., 14, 2398 (2008).
Creation of polynucleotide-assisted molecular assemblies in organic solvents:general strategy toward the creation of artificial DNA-like nanoarchitectures , M. Numata, K. Sugiyasu, T. Kishida, S. Haraguchi, N. Fujita, S.-M. Park, Y.-J. Yun, B.-H. Kim, and S. Shinkai, Org. Biomol. Chem., 6, 712 (2008).
Books and Reviews
"β-1,3-Glucans polysaccharides as novel one-dimensional hosts for DNA/RNA, conjugated polymers and nanoparticles", K. Sakurai, K. Uezu, M. Numata, T. Hasegawa, C. Li, K. Kaneko, and S. Shinkai, Chem. Commun. (Feature Article), 4383-4398 (2005).
”核酸をテンプレートとする1次元集積体とナノ化石ー分子認識と構造転写を利用した有機および無機ハイブリッドの創製” 沼田宗典 新海征治、化学と工業 2005年 5月 vol. 58 pp. 586-588.
”モレキュラーインフォーマティクスを拓く分子機能材料” (新海征治 編集)
日刊工業新聞社 pp. 16-18 (2006) (分筆)
"Molecular assemblies as templates toward the creation of functional superstructures"
K. Sada, M. Takeuchi, N. Fujita, M. Numata, and S. Shinkai, Chem. Soc. Rev., 36, 415 (2007).
"Self-Assembled Polysaccharide Nanotubes Generated from β-1,3-Glucan Polysaccharides", Munenori Numata and Seiji Shinkai, Advances in Polymer Science, ed. by T. Shimizu, Springer, Berlin, June, 28, 2008, Published Online.
”Creation of unique supramolecular nanoarchitectures utilizing natural polysaccharide as a one-dimensional host”, M. Numata, J. Incl. Phenom. Macrocycl Chem., 68, 25-47 (2010).
”Characterisation of supramolecules by TEM (Monographs in supramolecular chemistry)”, K. Kaneko, M. Numata, M. Takeuchi, S. Shinkai, Royal Society of Chemistry, UK. (2012).
”マイクロ空間での超分子科学” 日本化学会 化学と工業 デビジョントピックス (有機化学ディビジョン)vol. 67-8 p. 698 (2014).
“Polymer Self-Assembly Mediated by Boronic Acid”, M. Numata, Boron – Sensing, Synthesis and Supramolecular Self-Assembly – ed. by M. Li, J. S. Fossey, and T. D. James, Royal Society of Chemistry, Cambridge, UK. (2015).
”KINETIC CONTROL IN SYNTHESIS AND SELF-ASSEMBLY”, M. Numata, S. Yagai, T. Hamura, ACADEMIC PRESS, Elsevier (2019).